NATURAL RADIONUCLIDES IN UNDERGROUND WATER IN UKRAINE

Michael Buzinny, Victor Sakhno, Maxim Romanchenko

SE "The Marzeev Institute of Hygiene and Medical Ecology", 50, Popudrenko str., Kiev, Ukraine, t./f.+380 44 5137074 buzinny@gmail.com

Uranium isotope ratio ²³⁴/₂₃₈

Ca. 100 samples of Ukrainian water was examined for uranium $^{234}/_{238}$ isotope ratio during 1992-1993 using ICP MS technique. It shows most values exceeding <u>5.0</u> and even <u>30.0 and 43.0</u> for some of the samples.

Application of calorimetric or luminescence methods for analyzing U-alphas on base of (²³⁸U) – under-estimation of the total activity of uranium is of 2.0 to 10-15 times.

K. Shiraishi, Y. Igarashi, Y. Yamamoto, T. Nakajima, I.P. Los, A.V.Zelensky and M.G. Buzinny. Concentration Of Thorium And Uranium in Freshwater Samples Collected In Former USSR. Journal of Radioanalitical and Nuclear Chemistry, Articles, Vol.185, N.1 (1994)157-165.

Measurement approach

Since 1988, when we get **Quantulus**, we studied natural radioactivity of underground water following Salonen i.e. 30 day for each sample.

LSC-92: Zelensky A.V., Buzinny M.G., Los' I.P. Measurement of Radium-226, Radon-222, and Uranium-238, 234 in Underground Water of the Ukraine with Ultra Low-Level Liquid Scintillation Counter. In Liquid Scintilla-tion Spectrometry 92. Proc. of Int. Conf. on Advances in LSC, LSC 1992. Vienna, Austria, 14-18, 1992. Eds. J.E. Noakes, Franz Schönhofer & H.A. Polach. Radiocarbon. Tucson 1993, pp. 405-411.

After a while (since 1997) for routine analyses we use **uranium after TBP extraction**, **Rn-222** by its *extraction in toluene*, **Ra-226** by Rn *extraction in toluene*, using preconcentrated (100-200 ml) samples in Teflon vial after 7-10 day equilibration (72%-84%).

In case we find elevated levels of **Rn-222**, **U**, **Ra-226** we do measurements of **Ra-228**, **Pb-210** and **Po-210**.

Measurement approach

Since 1988, when we get **Quantulus**, we studied natural radioactivity of underground water following Salonen i.e. 30 day for each sample.

LSC-92 : Zelensky A.V., Buzinny M.G., Los' I.P. Measurement of Radium-226, Radon-222, and Uranium-238, 234 in Underground Water of the Ukraine with Ultra Low-Level Liquid Scintillation Counter. In Liquid Scintilla-tion Spectrometry 92. Proc. of Int. Conf. on Advances in LSC, LSC 1992. Vienna, Austria, 14-18, 1992. Eds. J.E. Noakes, Franz Schönhofer & H.A. Polach. Radiocarbon. Tucson 1993, pp. 405-411.

After a while (since 1997) for routine analyses we use <u>uranium after TBP extraction</u>, Rn-222 by its <u>extraction in toluene</u>, Ra-226 by Rn <u>extraction in toluene</u>, using preconcentrated samples in Teflon vial after 7-10 day equilibration (72%-84%).

In case we find elevated levels of **Rn-222**, **U**, **Ra-226** we do measurements of **Ra-228**, **Pb-210** and **Po-210**.

Measurement approach

Since 1988, when we get **Quantulus**, we studied natural radioactivity of underground water following Salonen i.e. 30 day for each sample.

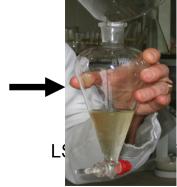
LSC-92 : Zelensky A.V., Buzinny M.G., Los' I.P. Measurement of Radium-226, Radon-222, and Uranium-238, 234 in Underground Water of the Ukraine with Ultra Low-Level Liquid Scintillation Counter. In Liquid Scintilla-tion Spectrometry 92. Proc. of Int. Conf. on Advances in LSC, LSC 1992. Vienna, Austria, 14-18, 1992. Eds. J.E. Noakes, Franz Schönhofer & H.A. Polach. Radiocarbon. Tucson 1993, pp. 405-411.

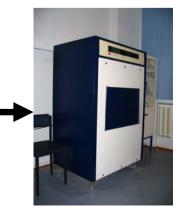
After a while (since 1997) for routine analyses we use **uranium after TBP extraction**, **Rn-222** by its *extraction in toluene*, **Ra-226** by Rn *extraction in toluene*, using preconcentrated samples in Teflon vial after 7-10 day equilibration (72%-84%).

In case we find elevated levels of **Rn-222**, **U**, **Ra-226** we do measurements of **Ra-228**, **Pb-210** and **Po-210**.

Trace of sample in lab today: U-analyze

<u>Water</u> + FeCl +HNO₃ > Heat (boiling) + ammonium hydroxide+ wait for precipitation > filtrate > solubilize > TBP in toluene extraction + neutralization by adding ammonium nitrate + bubling + toluene based scintillator > counting

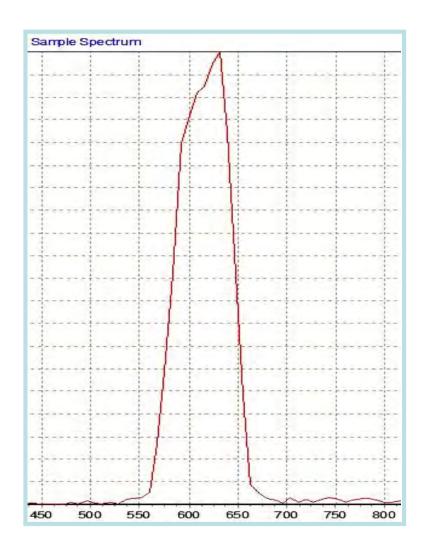


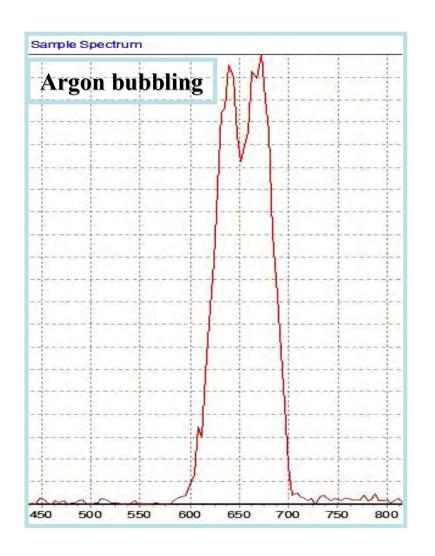




Conventional sample

Rare sample (1%)





LSC-2010, Paris

6-10 September, 2010

U spectra in toluene based cocktail measured in Teflon vial

a) Conventional spectrum of Uranium

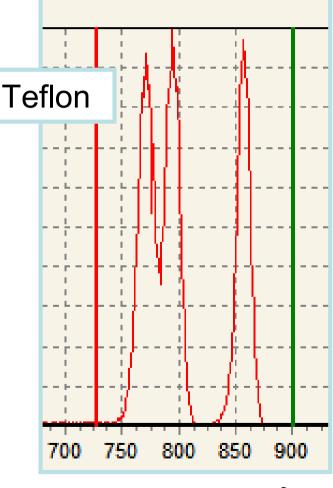
b) High resolution spectrum of Uranium

²²²Rn & ²²⁶Ra(²²²Rn) measurement

(10 ml water (solution) + 10 ml toluene based LS cocktail)

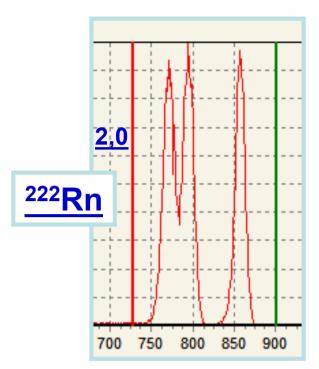
222Rn +218Po 10+ minutes after sample preparation

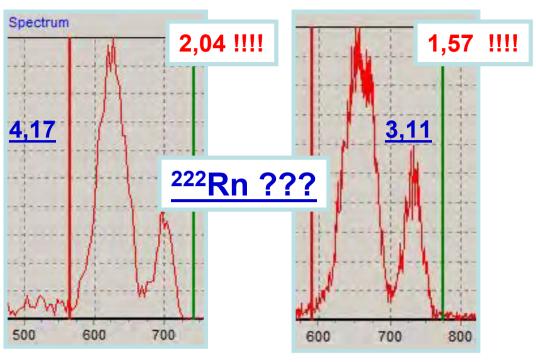
Plastic


Solution:

Preconcentration of

<u>100-**200**</u> ml !!!!!


222Rn growth
 7-10 days
 or
 72% to 84%


²²²Rn+²¹⁸Po+²¹⁸Po

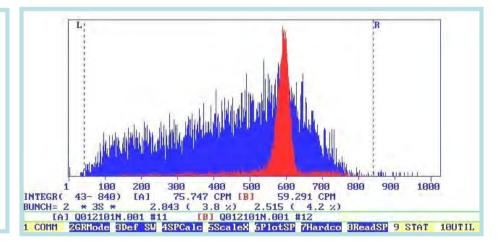
6-10 September, 2010

9

Sample		II	III	I	II/I	Eq	II	III	II III		I	Over
S1.9	8	133,5	174	40,5	3,30	76,6%	7,45	7,15	7,30		4,41	1,66
S2.9	8	72,5	96	23,5	3,09	76,6%	4,05	3,94	3,99		2,56	1,56
S3.9	8	5,3	7	1,7	3,12	76,6%	0,30	0,29	0,29		0,19	1,58
<u>\$1.9</u>	<u>10</u>	144,7	<u>191,3</u>	<u>46,6</u>	<u>3,11</u>	83,7%	7,39	<u>7,19</u>	<u>7,29</u>	1	4,64	<u>1,57</u>
S2.9	10	76,9	103,8	26,9	2,86	83,7%	3,93	3,90	3,91		2,68	1,46
S3.9	10	5,45	6,94	1,49	3,66	83,7%	0,28	0,26	0,27		0,15	1,82
<u>\$4</u>	<u>4</u>	<u>25</u>	<u>31</u>	<u>6</u>	<u>4,17</u>	<u>51,6%</u>	2,07	<u>1,89</u>	<u>1,98</u>	-	0,97	<u>2,04</u>

²¹⁰Pb(Bi)+²¹⁰Po on metal disk

Thermostimulated deposition onto metal disk



Measurement approach for LSC

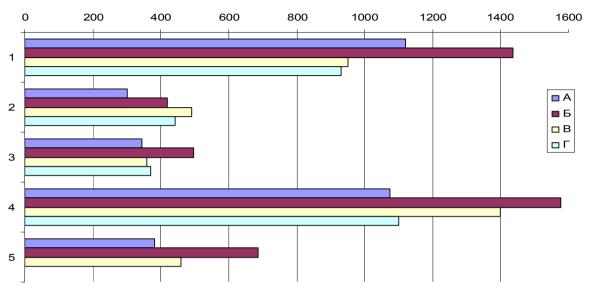
A.E. Bakhur, L.I. Manuilova, T.M. Ovsjannikova. Po-210 and Pb-210 in environment. Methods of determination. ANRI. N.1. 2009. p. 29-39. (In Russian)

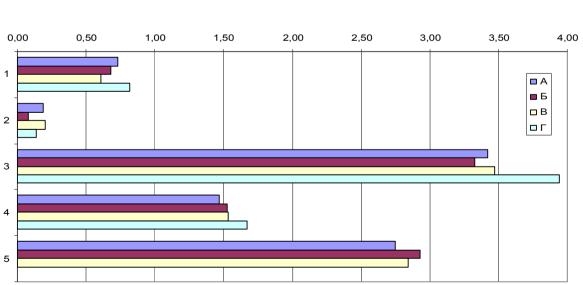
Buzinny M. Simultaneous determination of ²¹⁰Po and ²¹⁰Pb using LS technique. International Topical Conference on Po and Radioactive Pb isotopes. Sevilla, Spain, October, 26-28, 2009: Book of Abstract, 2009. – P. 45.

Intercomparison

Lab results of comparison ²¹⁰Po activity measurement in water samples (Bq/L) in frame of IAEA-CU-2007-09 World Wide Opened Proficiency Test (**IAEA**, **2007**)

Sample	Target value	Lab value	Precision	Acceptance
1	52.8±1.4	43.0±5.4	Yes	Yes *
2	101.6±2.8	75.8±7.9	Yes	No *
3	52.8±1.4	42.2±5.3	Yes	Yes *
4	101.6±2.8	82.9±8.9	Yes	Yes *
5	0,1±0.01	0.41±0.06		No **

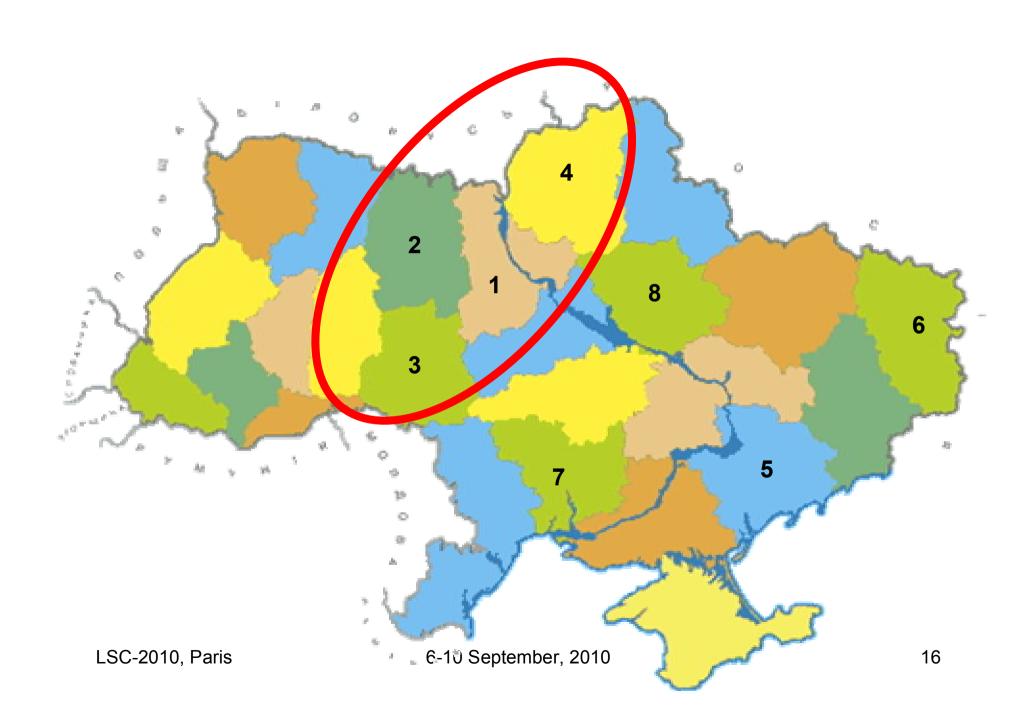

^{*} Systematic shift (overestimation of counting efficiency)


^{**} Overestimated background because of radon in toluene

Intercomparison for uranium, radium and lead-210 in water samples

			IHME				
Sample \ Nuclide	Total alpha (beta)	U by TBP	Ra by Salonen 50 ml	Emanation 200 ml	Po/Bi placed on disk	Pb-210 by gamma	
U	$0,65\pm0,07$	0,72±0,07	<0,05	<0,001			
Drinking water:	6,98±0,72	5,25±0,73	0,076±0,010	0,078 ± 0,007	1,10±0,25 1,19±0,25		
Radium	0,68±0,07		0,55±0,05	0,64±0,08	0,71±0,08 0,50±0,15		
Po-210 Pb-210	0,55±0,06		0,015	<0,001	0,54±0,09 0,57±0,09	0,68±0,09	
		•	SSM	•		•	
Sample \ Nuclide	Total alpha Total beta	U, Salonen	Ra-226		Po-210 Pb-210	Pb-210 by gamma	
U		0,76±0,007	<0,05				
Drinking water:	α 7,51±0,08 β 5,81±0,06	7,31±0,07	0,2±0,002		β 2,35±0,02		
Radium			0,52±0,005				
Po-210 Pb-210					α 0,67±0,007 β 0,75±0,008	0,71±0,1	

Lab Intercomparison for natural radionuclides in water


Radon

Average	SD	%
1000	104	10%
467	33	7%
359	14	4%
1191	181	15%
422	54	13%

Uranium

Average	SD	%
0,71	0,09	12%
0,15	0,05	18%
3,54	0,27	8%
1,55	0,09	6%
2,84	0,09	3%

Data obtained

(drinking water)

		Rn-222			Ra-226				Uranium				
Region	N	Avg	SD	Min	Max	Avg	SD	Min	Max	Avg	SD	Min	Max
Kiev	178	24,3	82,3	0,3	705	0,04	0,10	0,001	0,81	0,12	0,40	0,002	3,7
Zhytomyr	123	60,5	83,1	0,9	500	0,32	0,71	0,004	3,64	0,27	0,81	0,002	8,1
Vinnytsa	75	21,1	21,3	0,7	105	0,02	0,02	0,003	0,12	0,43	1,82	0,009	15,3
Chernihiv	27	3,2	2,3	1,0	12	0,02	0,01	0,001	0,05	0,03	0,05	0,002	0,21
Zaporizhzhia	23	7,7	8,3	0,5	29	0,12	0,32	0,01	1,42	0,04	0,08	0,004	0,3
Luhansk	20	9,3	15,5	1,0	62	0,02	0,04	0,003	0,2	0,09	0,13	0,003	0,42
Mykolaiv	18	4,4	2,3	0,5	8	0,02	0,02	0,007	0,09	0,04	0,04	0,003	0,15
Poltava	13	9,1	7,9	1,3	25	0,05	0,05	0,010	0,22	0,01	0,01	0,004	0,02

Radionuclides high levels?

- Initial high level source (rock, crack, water chemistry),
- Violation of working conditions of well,
- Violations of the sampling,
- No action or violation of treatment.

RADIATION REGULATION FOR WATER (bottled water)

Surface water:

- Total alpha activity0.1 Bq/L
- Total beta activity1.0 Bq/L
- Isotope analyses in case.

Wells, drilled wells:

- ²²⁶Ra **1.0** Bq/L,
- ²²⁸Ra **1.0** Bq/L,
- ²²²Rn 100 Bq/L;
- Uranium (total activity) – 1.0 Bq/L

INDUSTRIAL IMPACT:

(mines, production of uranium, rare earth, fertilizers)

Uranium:

Water in vicinity of uranium processing sites:

- Underground wells, local drilled wells (1.0 1500 Bq/L),
- Surface reservoirs, rivers (0,1 10 Bq/L)

Mine waters up to 50 Bq/L.

Radium:

Up to 5-10 Bq/L for mine waters.

Example of systematic remediation

Myronivka district, Kiev region

(Myronivka town and surrounding villages)

Initially for consumption was used water mostly deep drilled wells, ca 100+ m):

Rn-222
$$- 300-1000+ Bq/L$$
, (100 Bq/L)
Ra-226 $- 0.5-10.0 Bq/L$, (1.0 Bq/L)
U $- 0.5-10.0 Bq/L$. (1.0 Bq/L)

After 20 years

All the sources was switched to water of 20-50 m wells, and *no problem now (Radiation)*.

PERSPECTIVE

Directions of safewater (natural radioactivity):

- Measure natural radioactivity of water,
- Information provision,
- Propagation of modern analytical equipment,
- Development and adaptation of methods,
- Cover problems of water purification,
- Cover all territory of Ukraine.

Our contribution - organization of laboratory information support: http://safewater.narod.ru, development of measurement methods, training of personnel, intercomparison of results.

Acknowledgements

- We thank Sergei Zvarich for initiation of our U by TBP method for LSC.
- We thank Sanitary stations staff of Kiev, Zhytomyr, Vinnytsa, Chernihiv, Lugansk, Mykolaiv, Poltava regions for help.
- We thank Tetiana Lavrova, Yurii Soroka, Mykola Makarenko, Inger Östergren, Vadym Gudzenko for intercomparison test.
- I thank SSM for support of attending the Conference.

Literature

- **Bakhur A.E.**, Manuilova L.I., Ovsjannikova T.M. Po-210 and Pb-210 in environment. Methods of determination. ANRI. N.1. 2009. p. 29-39. (In Russian)
- **Buzinny MG**, Tsygankov MY, Bondar MO Studying the natural activity of drinking water and household water supply in the Zhytomyr region. In Actual problems of hygiene and ecological safety of Ukraine: Abstracts and reports of scientific practical Conference. (24-25 April 2003, Kyiv) .- Kyiv, 2003 .- P. 20-21. (In Ukrainian)
- **Buzinny M.** Simultaneous determination of 210Po and 210Pb using LS technique. International Topical Conference on Po and Radioactive Pb isotopes. Sevilla, Spain, October, 26-28, 2009: Book of Abstract, 2009. P. 45.
- **Salonen L.**: Simultaneous determination of gross alpha and beta in water by liquid scintillation counting. 2°International Conference on Analytical Chemistry in Nuclear Technology; Karlsruhe 5-9/6/1989
- **Salonen L.** Natural Radionuclides in Ground Water in Finland. Radiation Protection Dosimetry (1988). Volume 24, Issue1-4. PP. 163-166.
- **Shiraishi K.**, Igarashi Y., Yamamoto Y., Nakajima T., Los I.P., ZelenskyA.V. and Buzinny M.G.. Concentration Of Thorium And Uranium in Freshwater Samples Collected In Former USSR. Journal of Radioanalitical and Nuclear Chemistry, Articles, Vol.185, N.1 (1994)157-165.
- **Zelensky A.V.,** Buzinny M.G., Los' I.P. Measurement of Radium-226, Radon-222, and Uranium-238,234 in Underground Water of the Ukraine with Ultra Low-Level Liquid Scintillation Counter. In Liquid Scintillation Spectrometry 92. Proc. of Int. Conf. on Advances in LSC, LSC 1992. Vienna, Austria, 14-18, 1992. Eds. J.E. Noakes, Franz Schonhofer & H.A. Polach. Radiocarbon. Tucson 1993, pp. 405-411.

